Sabtu, 14 Januari 2012

TRANSFORMASI GEOMETRI

1. Pengertian Transformasi
Transformasi T dibidang adalah suatu pemetaan titik pada suatu bidang ke himpunan titik pada bidang yang sama.
Jenis-jenis transformasi yang dapat dilakukan antara lain :
Translasi (Pergeseran)
Refleksi (Pencerminan)
Rotasi (Perputaran)
Dilatasi (Perkalian)

2. Translasi dan Operasinya
Translasi (pergeseran) adalah pemindahan suatu objek sepanjang garis lurus dengan arah dan jarak tertentu.
Jika translasi  memetakan titik P (x, y) ke titik P’(x’, y’) maka x’ = x + a dan y’ = y + b atay P’ (x + a, y + b ) ditulis dalam bentuk :


Contoh : Tentukan koordinat bayangan titik A (-3, 4) oleh translasi
Jawab :
Jawab :
A’ = ( -3 + 3, 4 + 6)
A’ = (0, 10)

3. Refleksi (Pencerminan)
a. Pencerminan terhadap sumbu x

Matriks percerminan :

b. Pencerminan Terhadap sumbu y

Matriks Pencerminan:

c. Pencerminan terhadap garis y = x

Matriks Pencerminan

d. Pencerminan terhadap garis y = -x

Matriks Pencerminan:

e. Pencerminan terhadap garis x = h

Matriks Pencerminan:
Sehingga:


f. Pencerminan terhadap garis y=k

Matriks Pencerminan :
Sehingga:


g. Pencerminan terhadap titik asal O (0, 0)

Matriks Pencerminan :
Sehingga:


h. Pencerminan terhadap garis y = mx dimana m = tan q

Contoh :
Tentukan bayangan persamaan garis y = 2x – 5 oleh translasi
Jawab :
Ambil sembarang titik pada garis y = 2x – 5, misalnya (x, y) dan titik bayangan oleh translasi  adalah (x’, y’) sehingga ditulis
Atau
x’ = x + 3  x = x’- 3 ..... (1)
y’ = y – 2  y = y’ + 2 ......(2)
Persamaan (1) dan (2) disubtitusikan pada persamaan garis semula, sehingga :
y = 2x – 5
y’ + 2 = 2 (x’- 3) – 5
y’ = 2x’ – 6 – 5 – 2
y’ = 2x’ – 13
Jadi persamaan garis bayangan y = 2x – 5 oleh translasi adalah y = 2x – 13 .

Tidak ada komentar:

Posting Komentar